Wednesday, October 02, 2013

Maxima for Symbolic Calculus

A few years ago, I found an interesting open source symbolic calculus software called Xcas. It can however be quickly limited, for example, it does not seem to work well to compute Taylor expansions with several embedded functions.
Google pointed me to another popular open source package, Maxima. It looks a bit rudimentary (command like interface), but formulas can actually be very easily exported to latex with the tex command. Here is a simple example:

(%i14) D(x):=sqrt((lambda-rho*eta*x)^2+(-x^2+x)*eta^2);
                                              2       2         2
(%o14)       D(x) := sqrt((lambda - rho eta x)  + (- x  + x) eta )

(%i15) G(x) := (lambda - rho*eta*x - D(x))/(lambda - rho*eta*x +D(x));
                               lambda - rho eta x - D(x)
(%o15)                 G(x) := -------------------------
                               lambda - rho eta x + D(x)

(%i16) tex(taylor((1-exp(-t*D(x)))/(1-G(x)*exp(-t*D(x)))*(lambda - rho*eta*x - D(x)),x,0,3));
$$-{{\left(e^{t\,\lambda}-1\right)\,\eta^2\,x}\over{2\,e^{t\,\lambda}
 \,\lambda}}+{{\left(\left(4\,e^{t\,\lambda}\,t\,\eta^3\,\rho+\left(4
 \,\left(e^{t\,\lambda}\right)^2-4\,e^{t\,\lambda}\right)\,\eta^2
 \right)\,\lambda^2+\left(\left(-4\,\left(e^{t\,\lambda}\right)^2+4\,
 e^{t\,\lambda}\right)\,\eta^3\,\rho-2\,e^{t\,\lambda}\,t\,\eta^4
 \right)\,\lambda+\left(\left(e^{t\,\lambda}\right)^2-1\right)\,\eta^
 4\right)\,x^2}\over{8\,\left(e^{t\,\lambda}\right)^2\,\lambda^3}}+{{
 \left(\left(8\,\left(e^{t\,\lambda}\right)^2\,t^2\,\eta^4\,\rho^2-16
 \,\left(e^{t\,\lambda}\right)^2\,t\,\eta^3\,\rho\right)\,\lambda^4+
 \left(16\,\left(e^{t\,\lambda}\right)^2\,t\,\eta^4\,\rho^2+\left(-8
 \,\left(e^{t\,\lambda}\right)^2\,t^2\,\eta^5+\left(16\,\left(e^{t\,
 \lambda}\right)^3-16\,\left(e^{t\,\lambda}\right)^2\right)\,\eta^3
 \right)\,\rho+16\,\left(e^{t\,\lambda}\right)^2\,t\,\eta^4\right)\,
 \lambda^3+\left(\left(-16\,\left(e^{t\,\lambda}\right)^3+16\,\left(e
 ^{t\,\lambda}\right)^2\right)\,\eta^4\,\rho^2+\left(-16\,\left(e^{t
 \,\lambda}\right)^2-8\,e^{t\,\lambda}\right)\,t\,\eta^5\,\rho+2\,
 \left(e^{t\,\lambda}\right)^2\,t^2\,\eta^6+\left(-8\,\left(e^{t\,
 \lambda}\right)^3+8\,e^{t\,\lambda}\right)\,\eta^4\right)\,\lambda^2
 +\left(\left(12\,\left(e^{t\,\lambda}\right)^3-12\,e^{t\,\lambda}
 \right)\,\eta^5\,\rho+\left(2\,\left(e^{t\,\lambda}\right)^2+4\,e^{t
 \,\lambda}\right)\,t\,\eta^6\right)\,\lambda+\left(-2\,\left(e^{t\,
 \lambda}\right)^3-\left(e^{t\,\lambda}\right)^2+2\,e^{t\,\lambda}+1
 \right)\,\eta^6\right)\,x^3}\over{32\,\left(e^{t\,\lambda}\right)^3
 \,\lambda^5}}+\cdots $$

Regarding Taylor expansion, there seems to be quite a few options possible, but I found that the default expansion was already relatively easy to read. XCas produced less readable expansions, or just failed.

No comments :

Post a Comment